If a, b, c are in A.P. and x. y, z are in G.P., then the value of xb−cyc−aza−b is
1
(b) (1)
a, b and c are in A.P.
∴2b=a+c ........ (i)
And x, y and z are in G.P.
∴ y2=xz
Now, xb−c yc−a za−b
=xb+a−2b y2b−a−a za−b [From (i)]
=xa−b y2(a−b) za−b
=(xz)a−b (xz)b−a [From (ii), y2=xz ]
=(xz)0
=1