If a,b,c are in A.P., then show that : (i) a2(b+c),b2(c+a),c2(a+b) are also in A.P. (ii) b+c−a,c+a−b,a+b−c are in A.P. (iii) bc−a2,ca−b2,ab−c2 are in A.P.
(ii) ∵(c+a−b)−(b+c−a)=2(a−b)=−2(b−a)and(a+b−c)−(c+a−b)=2(b−c)=−2(c−b)=−2(b−a)(from(1))hence(c+a−b)−(b+c−a)=(a+b−c)−(c+a−b)∴(b+c−a),(c+a−b),(a+b−c)areinAP