If a, b, c are in G.P. then prove that : a2+ab+b2bc+ca+ab=b+ac+b
Since, a, b, c are in G.P.
∴ a = a, b = ar, c=ar2
a2+ab+b2bc+ca+ab=b+ac+b
a2+a(ar)+a2r2(ar)(ar)+(ar2)+a+(ar)=ar+aar2+ar
a2+(1+r+r2)a2(r3+r2+r)=a(1+r)a(r2+r)
1+r+r2r(1+r+r2)=1+r1+r)
1r=1r
LHS = RHS
Hence,
a2+ab+b2bc+ca+ab=b+ac+d