The required equation is (y−a2)(y−b2)(y−c2)=0,
or (x2−a2)(x2−b2)(x2−c2)=0, if y=x2;
That is, (x−a)(x−b)(x−c)(x+a)(x+b)(x+c)=0.
But (x−a)(x−b)(x−c)=x3+p1x2+p2x+p3;
Hence (x+a)(x+b)(x+c)=x3−p1x2+p2x−p3.
Thus the required equation is
(x3+p1x3+p2x+p3)(x3−p1x2+p2x−p3)=0,
or (x3+p2x)2−(p1x2+p3)2=0,
or x6+(2p2−p21)x4+(p22−2p1p3)x2−p23=0;
and if we replace x2 by y, we obtain
y3+(2p2−p21)y2+(p22−2p1p3)y−p23=0.