If a, b, c be in G.P. Whereas b - c, c - a, a - b are in H.P., then prove that a + b + c = -3 √(ac)
Open in App
Solution
b2=ac 2c−a=1b−c+1a−b=a−c(b−c)(a−b) or 2(ab−ca−b2+bc)=−(a−c)2 or 2(ab−2b2+bc)=−(a−c)2 or 2b (a + c - 2 √ac) = -[(√a−√c)(√a+√c)]2 or 2b(√a−√c)2=(√a−√c)2(√a+√c)2 ∴2b=−(a+c+2√ac)asa≠c ∴a+c=−4b,by(1) or a + b + c = -3b = −3√ac by(1)