If a, b, c, d are in GP, prove that
(a2+b2+c2)(b2+c2+d2)=(ab+bc+cd)2
Let r be the common ratio of the GP a, b, c, d.
Then, b = ar, c=ar2 and d=ar3
∴ LHS=(a2+b2+c2)(b2+c2+d2)
=(a2+a2r2+a2r4)(a2r2+a2r4+a2r6)
=a4r2(1+r2+r4)2
And, RHS=(ab+bc+cd)2=(a2r+a2r3+a2r5)2
a4r2(1+r2+r4)2
Hence, (a2+b2+c2)(b2+c2+d2)=(ab+bc+cd)2