△=∣∣
∣∣abcbcacab∣∣
∣∣=0
⇒C1=C1+C2+C3
⇒△=∣∣
∣∣a+b+cbca+b+ccaa+b+cab∣∣
∣∣
=(a+b+c)∣∣
∣∣1bc1ca1ab∣∣
∣∣=0
⇒R2=R2−R1;R3=R3−R1
⇒(a+b+c)∣∣
∣∣1bc0c−ba−c0a−bb−c∣∣
∣∣=0
expanding along C1
⇒(a+b+c)×1∣∣∣c−ba−ca−bb−c∣∣∣=(a+b+c)[(c−b)(b−c)−(a−b)(a−c)]
⇒(a+b+c)[bc−b2+bc−c2−a2+ab−c2−bc+ac]=0
⇒−(a+b+c)[a2+b2+c2−ab−bc−ac]=0
−12(a+b+c)[2a2+2b2+2c2−2ab−2bc−2ac]
⇒−12(a+b+c)[(a−b)2+(b−c)2+(c−a)2]=0
∵(a+b+c)≠0
∴(a−b)2+(b−c)2+(c−a)2=0
This can be true only when
(a−b)=0, (b−c)=0, (c−a)=0
⇒a=b,b=c,c=a
∴a=b=c.
Hence, proved.