wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

If a+b+c0 and ∣ ∣abcbcacab∣ ∣=0, then using properties of determinants, prove that a=b=c.

Open in App
Solution

=∣ ∣abcbcacab∣ ∣=0
C1=C1+C2+C3
=∣ ∣a+b+cbca+b+ccaa+b+cab∣ ∣
=(a+b+c)∣ ∣1bc1ca1ab∣ ∣=0
R2=R2R1;R3=R3R1
(a+b+c)∣ ∣1bc0cbac0abbc∣ ∣=0
expanding along C1
(a+b+c)×1cbacabbc=(a+b+c)[(cb)(bc)(ab)(ac)]
(a+b+c)[bcb2+bcc2a2+abc2bc+ac]=0
(a+b+c)[a2+b2+c2abbcac]=0
12(a+b+c)[2a2+2b2+2c22ab2bc2ac]
12(a+b+c)[(ab)2+(bc)2+(ca)2]=0
(a+b+c)0
(ab)2+(bc)2+(ca)2=0
This can be true only when
(ab)=0, (bc)=0, (ca)=0
a=b,b=c,c=a
a=b=c.
Hence, proved.


flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Properties
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon