If A + B + C = π, prove that cos2A+cos2B−cos2C = 1−2sinAsinBcosC
We have LHS = cos2A+cos2B−cos2C
=12(1+cos2A)+12(1+cos 2B)+12(1+cos 2C)
=12+12(cos 2A+cos 2B−cos 2C)
=12+12(1−4 sin A sin B cos C)
=1−2 sin A sin B cos C=RHS.
∴cos2A+cos2B−cos2C=1−2 sin A sin B cos C