If A+B+C=π, then sin2A+sin2B+sin2C is equal to
4sinAsinBsinC
4cosAcosBcosC
2cosAcosBcosC
2sinAsinBsinC
Find the value of sin2A+sin2B+sin2C:
Given data:A+B+C=π⇒2A+2B+2C=2π
sin2A+sin2B+sin2C=2sin(2A+2B)2cos(2A–2B)2+sin[2π–2(A+B)]=2sin(A+B)cos(A–B)–sin2(A+B)=2sin(A+B)cos(A–B)–2sin(A+B)cos(A+B)(∵sin2x=2sinxcosx)=2sin(A+B)[cos(A–B)–cos(A+B)]=2sin(π–C)(2sinAsinB)=4sinCsinAsinB=4sinAsinBsinC
Hence option (A) is the correct option.