wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

If A+B+C=π then sin3Acos(BC)+sin3Bcos(CA)+sin3Ccos(AB)=3sinAsinBsinC

A
True
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
B
False
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution

The correct option is A True

A+B+C=π

sin3Acos(BC)+sin3Bcos(CA)+sin3c.cos(ab)

sin2A[sinAcos(BC)]+sin2B[sinBcos(CA)]+sin2C[sinCcos(AB)]

12sin2A2sin(B+C)cos(BC)+12sin2B[2sin(C+A)cos(CA)]+12sin2C[2sin(A+B)cos(AB)]

12sin2A(sin2B+sin2C)+12sin2B(sin2C+sin2A)+12sin2C(sin2A+sin2B)

sin2A(sinBcosB+sinCcosC)+sin2B(sinCcosC+sinAcosA)+sin2C(sinAcosA+sinBcosB)

sin2AsinBcosB+sin2AsinCcosC+sin2BsinCcosC+sin2BsinAcosA+sin2CsinAcosA+sin2CsinBcosB

sinAsinBsin(A+B)+sinAsinCsin(C+A)+sinBsinCsin(B+C)

sinAsinBsinC+sinAsinBsinC+sinAsinBsinC

3sinAsinBsinC=RHS


flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Compound Angles
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon