If A+B+C=π then sin3Acos(B−C)+sin3Bcos(C−A)+sin3Ccos(A−B)=3sinAsinBsinC
A+B+C=π
sin3Acos(B−C)+sin3Bcos(C−A)+sin3c.cos(a−b)
sin2A[sinAcos(B−C)]+sin2B[sinBcos(C−A)]+sin2C[sinCcos(A−B)]
12sin2A2sin(B+C)cos(B−C)+12sin2B[2sin(C+A)cos(C−A)]+12sin2C[2sin(A+B)cos(A−B)]
12sin2A(sin2B+sin2C)+12sin2B(sin2C+sin2A)+12sin2C(sin2A+sin2B)
sin2A(sinBcosB+sinCcosC)+sin2B(sinCcosC+sinAcosA)+sin2C(sinAcosA+sinBcosB)
sin2AsinBcosB+sin2AsinCcosC+sin2BsinCcosC+sin2BsinAcosA+sin2CsinAcosA+sin2CsinBcosB
sinAsinBsin(A+B)+sinAsinCsin(C+A)+sinBsinCsin(B+C)
sinAsinBsinC+sinAsinBsinC+sinAsinBsinC
3sinAsinBsinC=RHS