wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

If A+B+C=π, then sinA+sinBsinC=2sinA2sinB2cosC2.

A
True
No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
False
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
Open in App
Solution

The correct option is B False
sinA+sinBsinC=2sin(A+B2)cos(AB2)sinC ----- ( 1 )
Since, A+B+C=π
Then, A+B=πC
(A+B2)=π2C2

sin(A+B2)=sin(π2C2)=cos(C2) ------ ( 2 )

Also, sinC=2sin(C2)cos(C2) ----- ( 3 )
Substituting ( 2 ) and ( 3 ) in ( 1 ) we get,
2cos(C2)cos(AB2)2sin(C2)cos(c2)

2cos(C2)[cos(AB2)sin(C2)]

2cos(C2)[cos(AB2)sin(π(A+B)2)] ----- [ As, A+B+C=π ]

2cos(C2)[cos(AB2)sin(π2A+B2)]

2cos(C2)[cos(AB2)cos(A+B2)]

2cos(C2)⎢ ⎢ ⎢2sin⎜ ⎜ ⎜AB2+A+B22⎟ ⎟ ⎟sin⎜ ⎜ ⎜AB2A+B22⎟ ⎟ ⎟⎥ ⎥ ⎥

2cos(C2)[2sin(A2)sin(B2)]

4sin(A2)sin(B2)cos(C2) [ As sin(x)=sinx ]
We can see given statement is false.

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Pythagorean Identities
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon