The correct option is
B False
sinA+sinB−sinC=2sin(A+B2)cos(A−B2)−sinC ----- ( 1 )
Since, A+B+C=π
Then, A+B=π−C
∴ (A+B2)=π2−C2
∴ sin(A+B2)=sin(π2−C2)=cos(C2) ------ ( 2 )
Also, sinC=2sin(C2)cos(C2) ----- ( 3 )
Substituting ( 2 ) and ( 3 ) in ( 1 ) we get,
⇒ 2cos(C2)cos(A−B2)−2sin(C2)cos(c2)
⇒ 2cos(C2)[cos(A−B2)−sin(C2)]
⇒ 2cos(C2)[cos(A−B2)−sin(π−(A+B)2)] ----- [ As, A+B+C=π ]
⇒ 2cos(C2)[cos(A−B2)−sin(π2−A+B2)]
⇒ 2cos(C2)[cos(A−B2)−cos(A+B2)]
⇒ 2cos(C2)⎡⎢
⎢
⎢⎣−2sin⎛⎜
⎜
⎜⎝A−B2+A+B22⎞⎟
⎟
⎟⎠sin⎛⎜
⎜
⎜⎝A−B2−A+B22⎞⎟
⎟
⎟⎠⎤⎥
⎥
⎥⎦
⇒ 2cos(C2)[−2sin(A2)sin(−B2)]
⇒ 4sin(A2)sin(B2)cos(C2) [ As sin(−x)=−sinx ]
∴ We can see given statement is false.