wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

If A + B + C = π, then tan A + tan B + tan Ctan A tan B tan Cis equal to
(a) tan A tan B tan C
(b) 0
(c) 1
(d) None of these

Open in App
Solution

(c) 1
π = 180°
Using tan(180 – A) = -tan A, we get:
C=π-(A+B)Now,tanA+tanB+tanCtanA tanB tanC=tanA+tanB+tanπ-(A+B)tanA tanB tanπ-(A+B)=tanA+tanB-tan(A+B)-tanA tanB tan(A+B)=tanA+tanB-tan A+tan B1-tanA tanB-tanA tanB×tan A+tan B1-tanA tanB

= tanA+tanB-tan2AtanB-tanA tan2B-tanA-tanB-tan2A tanB-tanA tan2B=-tan2AtanB-tanA tan2B-tan2AtanB-tanA tan2B=1

flag
Suggest Corrections
thumbs-up
8
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Compound Angles
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon