If A=⎡⎢⎣101012004⎤⎥⎦, then show that |3A|=27|A|.
Given A=⎡⎢⎣101012004⎤⎥⎦
It can be observed that in the first column, two entries are zero. Thus, we expand the matrix A along the first column (C1) for finding |A|.
∴ |A|=1∣∣∣1204∣∣∣−0∣∣∣0104∣∣∣+0∣∣∣0112∣∣∣=1(1×4−0×2)=4∴ 27|A|=27×4=108 …(i)
Now, 3A=3⎡⎢⎣101012004⎤⎥⎦=⎡⎢⎣3030360012⎤⎥⎦ ∴|3A|=⎡⎢⎣3030360012⎤⎥⎦
It can be observed that in the first column, two entries are zero. Thus, we expand the determinant along the first column (C1) for easier calculation.
|3A|=3∣∣∣36012∣∣∣−0∣∣∣03012∣∣∣+0∣∣∣0336∣∣∣=3(3×12−0×6)⇒ |3A|=3(36)=108 …(ii)
From Eqs. (i) and (ii), we get
|3A|=27|A|
Hence, the given result is proved.