If A=⎡⎢⎣110215121⎤⎥⎦, then a11A21+a12A22+a13A23=.......
Let a1,a2,a3,....,a11 be real numbers satisfying a1=15, 27–2a2>0 and ak=2ak−1−ak−2 for k = 3, 4, ….11. If a21+a22+a23+....a21111=90, then a1+a2+a3+.....a1111 is equal to