If A′=⎡⎢⎣34−1201⎤⎥⎦ and B=[−121123], then verify that
(i)(A+B)'=A'+B'
(ii)(A-B)'=A'-B'
∴A=(A′)′=⎡⎢⎣34−1201⎤⎥⎦=[3−10421]
Here, =A+B=[3−10421]+[−121123]=[211544]
∴LHS=(A+B)′=[211544]=⎡⎢⎣251414⎤⎥⎦B′=[−121123]=⎡⎢⎣−112213⎤⎥⎦,alsoA′⎡⎢⎣34−1201⎤⎥⎦
Here, RHS=A′+B′=⎡⎢⎣34−1201⎤⎥⎦+⎡⎢⎣−112213⎤⎥⎦=⎡⎢⎣251414⎤⎥⎦
So, verfied that (A+B)'=A'+B'.
∴A=(A′)′=⎡⎢⎣34−1201⎤⎥⎦=[3−10421]
Here, RHS=A′−B′=⎡⎢⎣34−1201⎤⎥⎦−⎡⎢⎣−112213⎤⎥⎦=⎡⎢⎣3+14−1−1−22−20−11−3⎤⎥⎦=⎡⎢⎣43−30−1−2⎤⎥⎦
Also (A−B)′=([3−10421]−[−121123])′(∵A=(A′)′)=[3+1−1−20−14−12−21−3]=[4−3−130−2]′=⎡⎢⎣43−30−1−2⎤⎥⎦
So, verified that (A-B)'=A'-B'