If A=∫π0sin xsin x+cos xdx
B=∫π0sin xsin x−cos xdx
value of A is equal to B
A and B both are irrational number
A=∫π0sin(π−x)sin(π−x)+cos(π−x)dx
A=∫π0sin xsin x−cos xdx=B
A = B
Now A+B=∫π0sin x(sin x−cos x)+sin x(sin x+cos x)(sin x−cos x)(sin x+cos x)
A+B=∫π02sin2x(sin2x−cos2x)dx
A+B=∫π01−cos 2x−cos 2xdx=∫π0(1−sec 2x)dx
A+B=[x−12log|sec 2x+tan 2x|]π0
A+B=π−12log|sec 2π+tan 2π|+12log|sec 0+tan 0|
A+B=π⇒A=B=π2