wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

If A=∣ ∣010001pqr∣ ∣ and I is the identity matrix of order 3, then show thatA3=pI+qA+rA2.

Open in App
Solution

A=010001pqr
Now,
A2=AA
A2=010001pqr010001pqr

A2=0+0+00+0+00+1+00+0+p0+0+q0+0+r0+0+rpp+0+rq0+q+r2

A2=001pqrrpp+rqq+r2
A3=A2A

A3=001pqrrpp+rqq+r2010001pqr

A3=0+0+p0+0+q0+0+r0+0+rpp+0+rq0+q+r20+0+pq+r2prp+0+q2+r2q0+p+rq+rq+r3

A3=pqrrpp+rqq+r2pq+r2prp+q2+r2qp+2rq+r3 ---- ( 1 )

pI+qA+rA2=p100010001+q010001pqr+r001pqrrpp+rqq+r2

pI+qA+rA2=p000p000p+0q000qpqq2qr+00rrprqr2r2prp+r2qrq+r3

pI+qA+rA2=pqrrpp+rqq+r2pq+r2pq2+r2q+rpp+2qr+r3 --- ( 2 )
From ( 1 ) and ( 2 )
A3=pI+qA+rA2


flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Matrix Definition and Representation
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon