The correct option is B 216
A={x:x=2k,k∈N and k≤100}⇒A={2,4,6,8,…,200}⇒n(A)=100
B={x:x=2k,k∈W and k<11}
⇒B={20,21,22,23,…,210}⇒n(B)=11
C={x:x=k3,k∈N and k<11}⇒C={13,23,33,…,103}⇒n(C)=10
Now, A∩B={21,22,23,24,25,26,27}
⇒n(A∩B)=7⇒n(A△B)=n(A)+n(B)−2n(A∩B)⇒n(A△B)=100+11−14⇒n(A△B)=97 ⋯(1)
B∩C={1,23,43,83}⇒n(B∩C)=4⇒n(B△C)=n(B)+n(C)−2n(B∩C)⇒n(B△C)=11+10−8⇒n(B△C)=13 ⋯(2)
A∩C={23,43}⇒n(A∩C)=2⇒n(A△C)=n(A)+n(C)−2n(A∩C)⇒n(A△C)=100+10−4⇒n(A△C)=106 ⋯(3)
From equations (1),(2) and (3),
n(A△B)+n(B△C)+n(A△C)=97+13+106=216