1
You visited us
1
times! Enjoying our articles?
Unlock Full Access!
Byju's Answer
Standard XII
Mathematics
Domain and Range of Trigonometric Ratios
If a sec θ...
Question
If
a
s
e
c
θ
+
b
t
a
n
θ
+
c
=
0
and
p
s
e
c
θ
+
q
t
a
n
θ
+
r
=
0
,
prove that
(
b
r
−
q
c
)
2
−
(
p
c
−
a
r
)
2
=
(
a
q
−
b
p
)
2
Open in App
Solution
We have,
a
s
e
c
θ
+
b
t
a
n
θ
+
c
=
0
and
p
s
e
c
θ
+
q
t
a
n
θ
+
r
=
0
Solving these two equations for
s
e
c
θ
and
t
a
n
θ
by the cross multiplication we get,
s
e
c
θ
b
r
−
q
c
=
t
a
n
θ
c
p
−
a
r
=
1
a
q
−
b
p
⇒
s
e
c
θ
=
b
r
−
c
q
a
q
−
b
p
a
n
d
t
a
n
θ
=
c
p
−
a
r
a
q
−
b
p
N
o
w
,
s
e
c
2
θ
−
t
a
n
2
θ
=
1
⇒
(
b
r
−
c
q
a
q
−
b
p
)
2
−
(
c
p
−
a
r
a
q
−
b
p
)
2
=
1
⇒
(
b
r
−
c
q
)
2
−
(
c
p
−
a
r
)
2
=
(
a
q
−
b
p
)
2
Suggest Corrections
1
Similar questions
Q.
If
a
s
e
c
θ
+
b
t
a
n
θ
+
c
=
0
and
p
s
e
c
θ
+
q
t
a
n
θ
+
r
=
θ
, prove that
(
b
r
−
q
c
)
2
−
(
p
c
−
a
r
)
2
=
(
a
p
−
b
p
)
2
Q.
If
x
=
a
s
e
c
θ
+
b
t
a
n
θ
and
y
=
a
t
a
n
θ
+
b
s
e
c
θ
, prove that
(
x
2
−
y
2
)
=
(
a
2
−
b
2
)
.
Q.
If pb = aq, qc = br and pc = ar, then the system of equations px + qy = r and ax + by = c (a, b, c, p, q, r ≠ 0)
Q.
If
x
=
a
+
a
r
+
a
r
2
+
.
.
.
.
∞
,
y
=
b
−
b
r
+
b
r
2
−
.
.
.
.
∞
,
a
n
d
z
=
c
+
c
r
2
+
c
r
4
+
.
.
.
.
∞
,
(
r
|
>
1
,
c
≠
0
t
h
e
n
x
y
z
=
.