If asinx+bcos(x+θ)+bcos(x−θ)=d, then the minimum value of |cosθ| is equal to
12|b|√d2−a2
12|a|√d2−b2
asinx+bcos(x+θ)+bcos(x−θ)=d
⇒asinx+2bcosxcosθ=d
⇒|d|≤√a2+4b2cos2θ
⇒d2−a24b2≤cos2θ
|cosθ|≥√d2−a22|b|