Ifa2+b2=1, then (1+b+ia)(1+b-ia)is equal to?
1
2
b+ia
a+ib
To find the value of (1+b+ia)(1+b-ia):
(1+b+ia)(1+b-ia)
Multiply numerator and denominator with (1+b+ia)
=(1+b+ia)(1+b-ia)(1+b+ia)(1+b+ia)=(1+b+ia)2(1+b)2-ia2=1+b2-a2+2b+i2ab+i2a1+b2+2b+a2
=a2+b2+b2-a2+2b+i2ab+i2a1+1+2b ( since a2+b2=1)
=2b2+2b+i2ab+i2a2+2b=2b(b+1)+2ia(b+1)2(b+1)=b+ia
Hence the correct option is C.
If (a2+b2)=11+b+ia(1+b−ia)