If ax2+bx+c=0 and bx2+cx+a=0 have a common root and a, b, c are non-zero real numbers, then find the value of a3+b3+c3abc
3
ax2+bx+c=0
bx2+cx+a=0
Let α be the common root,
α2ab−c2=αbc−a2=1ac−b2
⇒ α= ab−c2bc−a2=bc−a2ac−b2
⇒a2bc−ac3−ab3+b2c2=b2c2−2a2bc+a4
⇒ ac3+a4+ab3=3a2bc
⇒a3+b3+c3abc=3