The correct option is A 3
∣∣
∣
∣∣111mC1m+3C1m+6C1mC2m+3C2m+6C2∣∣
∣
∣∣=2α3β5γ
⇒∣∣
∣
∣
∣∣111mm+3m+6m(m−1)2(m+3)(m+2)2(m+6)(m+5)2∣∣
∣
∣
∣∣=2α3β5γ
Consider,∣∣
∣
∣
∣∣111mm+3m+6m(m−1)2(m+3)(m+2)2(m+6)(m+5)2∣∣
∣
∣
∣∣
C1→C1−C2,C2→C2−C3
∣∣
∣
∣
∣∣001−3−3m+6−3(m+1)−3(m+4)(m+6)(m+5)2∣∣
∣
∣
∣∣
=32∣∣
∣
∣
∣∣00111m+6(m+1)(m+4)(m+6)(m+5)2∣∣
∣
∣
∣∣
=32[m+4−m−1]=33
So, 203350=2α3β5γ
On comparing,
α=γ=0,β=3
So,α+β+γ=3