Δ=∣∣
∣
∣∣a2b2c2(a+1)2(b+1)2(c+1)2(a−1)2(b−1)2(c−1)2∣∣
∣
∣∣
=∣∣
∣
∣∣a2b2c2a2+2a+1b2+2b+1c2+2c+1a2−2a+1b2−2b+1c2−2c+1∣∣
∣
∣∣
=∣∣
∣
∣∣a2b2c22a+12b+12c+1−4a−4b−4c∣∣
∣
∣∣ R2→R2−R1, and R3→R3−R2
=∣∣
∣
∣∣a2b2c24a4b4c2a+12b+12c+1∣∣
∣
∣∣=4∣∣
∣
∣∣a2b2c2abc2a+12b+12c+1∣∣
∣
∣∣
=4∣∣
∣
∣∣a2b2c2abc111∣∣
∣
∣∣ R3→R2−2R2
=−4∣∣
∣
∣∣111abca2b2c2∣∣
∣
∣∣=−4(a−b)(b−c)(c−a)