The correct option is
B a+b+cGiven,
∣∣
∣
∣∣aa3a4−1bb3b4−1cc3c4−1∣∣
∣
∣∣=0Doing Row operation R1→R1−R2,R3→R3−R2
∣∣
∣
∣∣a−ba3−b3a4−b4bb3b4−1c−bc3−b3c4−b4∣∣
∣
∣∣=0
∣∣
∣
∣∣a−b(a−b)(a2+b2+ab)(a2+b2)(a+b)(a−b)bb3b4−1c−b(c−b)(b2+c2+cb)(c2+b2)(c+b)(c−b)∣∣
∣
∣∣=0
Taking out (a−b) and (c−b) from the determinant and Doing Row operations R1→R1−R3
(a−b)(c−b)∣∣
∣
∣∣0a2−c2+b(a−c)(a3−c3)+b2(a−c)+b(a2−c2)bb3b4−11(b2+c2+cb)(c2+b2)(c+b)∣∣
∣
∣∣=0
(a−b)(c−b)(a−c)∣∣
∣
∣∣0a+c+b(a2+c2+ac)+b2+b(a+c)bb3b4−11(b2+c2+cb)(c2+b2)(c+b)∣∣
∣
∣∣=0
Since a,b,c are distinct.
∣∣
∣
∣∣0a+c+b(a2+c2+ac)+b2+b(a+c)bb3b4−11(b2+c2+cb)(c2+b2)(c+b)∣∣
∣
∣∣=0
Doing Row operation R2→R2−bR3
∣∣
∣
∣∣0a+c+b(a2+c2+ac)+b2+b(a+c)0−bc2−cb2−bc3−c2b2−b3c−11(b2+c2+cb)(c2+b2)(c+b)∣∣
∣
∣∣=0
Doing Row operation R2→R2+cbR1
∣∣
∣
∣∣0a+c+b(a2+c2+ac)+b2+b(a+c)0abcabc(a+b+c)−11(b2+c2+cb)(c2+b2)(c+b)∣∣
∣
∣∣=0
Expanding Determinant, w eget
abc(a+b+c)2−(a+b+c)−abc(a2+b2+c2)−abc(ab+bc+ac)=0
⇒abc(ab+bc+ac)=abc((a+b+c)2−a2−b2−c2)−(a+b+c)
⇒abc(ab+bc+ca)=abc(2(ab+bc+ac))−(a+b+c)
⇒abc(ab+bc+ac)=a+b+c
Hence, option A is correct.