wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

If ∣ ∣ ∣aa3a41bb3b41cc3c41∣ ∣ ∣=0 and a,b,c are all distinct then abc(ab+bc+ca) is equal to

A
a+b+c
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
B
abc
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
0
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
none of these
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution

The correct option is B a+b+c
Given, ∣ ∣ ∣aa3a41bb3b41cc3c41∣ ∣ ∣=0
Doing Row operation R1R1R2,R3R3R2
∣ ∣ ∣aba3b3a4b4bb3b41cbc3b3c4b4∣ ∣ ∣=0
∣ ∣ ∣ab(ab)(a2+b2+ab)(a2+b2)(a+b)(ab)bb3b41cb(cb)(b2+c2+cb)(c2+b2)(c+b)(cb)∣ ∣ ∣=0
Taking out (ab) and (cb) from the determinant and Doing Row operations R1R1R3
(ab)(cb)∣ ∣ ∣0a2c2+b(ac)(a3c3)+b2(ac)+b(a2c2)bb3b411(b2+c2+cb)(c2+b2)(c+b)∣ ∣ ∣=0
(ab)(cb)(ac)∣ ∣ ∣0a+c+b(a2+c2+ac)+b2+b(a+c)bb3b411(b2+c2+cb)(c2+b2)(c+b)∣ ∣ ∣=0
Since a,b,c are distinct.
∣ ∣ ∣0a+c+b(a2+c2+ac)+b2+b(a+c)bb3b411(b2+c2+cb)(c2+b2)(c+b)∣ ∣ ∣=0
Doing Row operation R2R2bR3
∣ ∣ ∣0a+c+b(a2+c2+ac)+b2+b(a+c)0bc2cb2bc3c2b2b3c11(b2+c2+cb)(c2+b2)(c+b)∣ ∣ ∣=0
Doing Row operation R2R2+cbR1
∣ ∣ ∣0a+c+b(a2+c2+ac)+b2+b(a+c)0abcabc(a+b+c)11(b2+c2+cb)(c2+b2)(c+b)∣ ∣ ∣=0
Expanding Determinant, w eget
abc(a+b+c)2(a+b+c)abc(a2+b2+c2)abc(ab+bc+ac)=0
abc(ab+bc+ac)=abc((a+b+c)2a2b2c2)(a+b+c)
abc(ab+bc+ca)=abc(2(ab+bc+ac))(a+b+c)
abc(ab+bc+ac)=a+b+c
Hence, option A is correct.

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Properties
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon