The correct option is B (1,1)
Applying C1→aC1 and then C1→C1+bC2+cC3, and taking a2+b2+c2 common from C1, we get
△=(a2+b2+c2)a∣∣
∣∣1b−cc+b1bc−a1b+ac∣∣
∣∣
R2→R2−R1,R3→R3−R1
=(a2+b2+c2)a∣∣
∣∣1b−cc+b0c−a−b0a+b−b∣∣
∣∣
Expanding along C1
=(a2+b2+c2)a(−bc+a2+ab+ac+bc)
=(a2+b2+c2)(a+b+c)
Hence, △=0⇒a+b+c=0
Therefore, line ax+by+c=0 passes through the fixed point (1,1).