A=∣∣
∣
∣∣(b+c)2a2a2b2(a+c)2b2c2c2(a+b)2∣∣
∣
∣∣
C1→C1−C2,
=∣∣
∣
∣∣(b+c−a)(b+c+a)a2a2(b−a−c)(b+a+c)(a+c)2b20c2(a+b)2∣∣
∣
∣∣
C2→C2−C3,
=∣∣
∣
∣∣(b+c−a)(b+c+a)0a2(b−a−c)(b+a+c)(a+c−b)(a+c+b)b20(c−a−b)(c+a+b)(a+b)2∣∣
∣
∣∣
=(a+b+c)2∣∣
∣
∣∣(b+c−a)0a2(b−a−c)(a+c−b)b20(c−a−b)(a+b)2∣∣
∣
∣∣
R2→R2−R1, R2→R2−R3
=2(a+b+c)2∣∣
∣
∣∣(b+c−a)0a2−ca−a(a+b)0(c−a−b)(a+b)2∣∣
∣
∣∣
Expanding along R1, we get
=2abc(a+b+c)3
⇒k=2
Alternate Solution:
Put a=b=c=1
∣∣
∣∣411141114∣∣
∣∣=27k⇒54=27k⇒k=2