wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

If ∣ ∣ ∣(b+c)2a2a2b2(a+c)2b2c2c2(a+b)2∣ ∣ ∣=kabc(a+b+c)3,
then k=

Open in App
Solution

A=∣ ∣ ∣(b+c)2a2a2b2(a+c)2b2c2c2(a+b)2∣ ∣ ∣

C1C1C2,
=∣ ∣ ∣(b+ca)(b+c+a)a2a2(bac)(b+a+c)(a+c)2b20c2(a+b)2∣ ∣ ∣

C2C2C3,
=∣ ∣ ∣(b+ca)(b+c+a)0a2(bac)(b+a+c)(a+cb)(a+c+b)b20(cab)(c+a+b)(a+b)2∣ ∣ ∣

=(a+b+c)2∣ ∣ ∣(b+ca)0a2(bac)(a+cb)b20(cab)(a+b)2∣ ∣ ∣

R2R2R1, R2R2R3
=2(a+b+c)2∣ ∣ ∣(b+ca)0a2caa(a+b)0(cab)(a+b)2∣ ∣ ∣
Expanding along R1, we get
=2abc(a+b+c)3

k=2

Alternate Solution:
Put a=b=c=1
∣ ∣411141114∣ ∣=27k54=27kk=2

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Special Determinants
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon