The correct option is A A and B are independent of x
Given, ∣∣
∣
∣∣x2+xx+1x−22x2+3x−13x3x−3x2+2x+32x−12x−1∣∣
∣
∣∣
R2→R2−R1−R3
⇒∣∣
∣
∣∣x2+xx+1x−2−400x2+2x+32x−12x−1∣∣
∣
∣∣
then, −4[(2x−1)(x+1)−(2x−1)(x−2)]
−12(2x−1)=12−24x=Ax+B
so ,A=−24B=12 is const.
Hence A, B are independent of x.