(x−4)[(x−4)(x−4)−4x2]−2x[2x(x−4)−4x2]+2x[4x2−2x(x−4)]=(A+Bx)(x−A)2(x−4)[x2−8x+16−4x2]−2x[2x2−8x−4x2]2x[4x2−2x2+8x]=(A+Bx)(x−A)2(x−4)[−3x2−8x+16]−2x[−2x2−8x]=(A+Bx)(x−A)2+2x[2x2+8x]−3x3−8x2+16x+12x2+32x−64+4x3+16x2=(A+Bx)(x−A)2+4x3+16x25x3+36x2+48x−64=(A+Bx)(x2−2Ax+A2)=Ax2−2A2x+A3+Bx3−2ABx2+A2BxOncomparingwithx3.–––5=BorB=5oncomparingx––.48=A2B−2A248=5A2−2A248=3A2483=A216=A2A=4(A,B)=(4,5)Ans.