∣∣
∣
∣∣xnxn+2xn+4ynyn+2yn+4znzn+2zn+4∣∣
∣
∣∣
→xnynzn∣∣
∣
∣∣1x2x41y2y41z2z4∣∣
∣
∣∣
applying R1→R1−R3 and R2→R2−R3 gives
→xnynzn(x2−z2)(y2−z2)∣∣
∣
∣∣01x2+y201y2+z21z2z4∣∣
∣
∣∣
=(x2−y2)(y2−z2)(z2−x2)xnynzn
⇒(x2−y2)(y2−z2)(z2−x2)xnynzn=(1y2−1x2)(1z2−1y2)(1x2−1z2)
⇒(x2−y2)(y2−z2)(z2−x2)xnynzn=(x2−y2)(y2−z2)(z2−x2)x4y4z4
⇒n=−4
∴−n=4