The correct option is C (19,5−√52]∪[5+√52,∞)
x2+2(a+2)x+9a−1=0
The required conditions are,
(i) D≥0⇒4(a+2)2−4(9a−1)≥0⇒a2−5a+5≥0
Now,
a2−5a+5=0⇒a=5±√25−202⇒a=5±√52
a∈(−∞,5−√52]∪[5+√52,∞)⋯(1)
(ii) −b2a<0⇒−2(a+2)2<0⇒a+2>0⇒a∈(−2,∞)⋯(2)
(iii) f(0)>0⇒9a−1>0⇒a∈(19,∞)⋯(3)
From equations (1),(2) and (3),
a∈(19,5−√52]∪[5+√52,∞)