The correct option is B 0
f(z)=z2(z2−3z+2)2
=z2(z−1)2(z−2)2
So poles are z=1 and 2
(Both are Double pole) i.e., m=2
C:|Z|=4. Hence both the poles lies inside ′C′
=Res f(z)(z = 1) = 1(2 −1)!(ddz(z − 1)2f(z)]z = 1
=[ddzz2(z−2)2]z=1=4
R2 = Res F(z)(z = 2) = 1(2 − 1)!(ddz(z−2)2f(z)]Z = 2
==[ddzz2(z−1)2]z=2=4
So By Cauchy Residue Theorem,
I=∫Cf(z)dz=2πi[R1+R2=0]