If 2m+n2n−m=16 and 3p3n=81, a=2110, then a2m+n−p(am−2n+2p)−1=?
Given:
2m+n2n−m=16,
3p3n=81,
a=2110.
Lets take 2m+n2n−m=16
⇒3p−n=34
⇒p−n=4 [Since, When bases are equal, Powers are Equal.]
⇒n−p=−4 ---(2)
Lets evaluate a2m+n−p(am−2n+2p)−1
a2m+n−p(am−2n+2p)−1
=a2m+n−pa−m+2n−2p
=a2m+n−p+m−2n+2p
=a3m−n+p
=a3(2)−(−4)
=a10
=(2110)10 [∵a=2110]
=2110×10
=2
∴a2m+n−p(am−2n+2p)−1=2
Hence, Option A is correct.