If logab−c=logbc−a=logca−b then prove that aa.bb.cc=1
Given logab−c=logbc−a=logca−bLetlogab−c=logbc−a=logca−b=k
Consider logab−c=k
loga=k(b−c)
∴a=e(b−c)k (Since, loga=x⇒a=ex)
Similar way, logbc−a=k
logb=k(c−a)
∴b=e(c−a)k
logca−b=k
logc=k(a−b)
∴c=e(a−b)k
Consider aa⋅bb⋅cc=(e(b−c)k)a(e(c−a)k)b(e(a−b)k)c
=(ea(b−c)k)(eb(c−a)k)(ec(a−b)k) (Since, (am)n=a(m×n))
=ea(b−c)k+b(c−a)k+c(a−b)k
=e(ab−ac+bc−ab+ac−bc)k
=e0
=1 (Since, a0=1 for any non zero quantity of a)
∴aa.bb.cc=1