wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

If logabc=logbca=logcab then prove that aa.bb.cc=1

Open in App
Solution

Given logabc=logbca=logcabLetlogabc=logbca=logcab=k
Consider logabc=k
loga=k(bc)
a=e(bc)k (Since, loga=xa=ex)
Similar way, logbca=k
logb=k(ca)
b=e(ca)k
logcab=k
logc=k(ab)
c=e(ab)k
Consider aabbcc=(e(bc)k)a(e(ca)k)b(e(ab)k)c
=(ea(bc)k)(eb(ca)k)(ec(ab)k) (Since, (am)n=a(m×n))
=ea(bc)k+b(ca)k+c(ab)k
=e(abac+bcab+acbc)k
=e0
=1 (Since, a0=1 for any non zero quantity of a)
aa.bb.cc=1


flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Basic Theorems in Differentiation
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon