If cos−1p+cos−1q+cos−1r=π then p2+q2+r2=
1-2pqr
cos−1p+cos−1q+cos−1r=π
cos−1p+cos−1q=π−cos−1r
⇒cos−1(pq−√1−p2√1−q2)=cos−1(−r)
⇒pq−√1−p2√1−q2=−r
Squaring and simplyfying
(pq+r)2=(√1−p2√1−q2)2
⇒p2q2+r2+2pqr=(1−p2)(1−q2)
⇒p2q2+r2+2pqr=1−p2−q2+p2q2
⇒p2+q2+r2=1−2pqr