We have,
cos−1x+cos−1y+cos−1z=π......(1)
⇒cos−1x+cos−1y=π−cos−1z
We know that,
cos−1A+cos−1B=cos−1[AB−√1−A2√1−B2]
Therefore,
cos−1[xy−√1−x2√1−y2]=π−cos−1z
⇒[xy−√1−x2√1−y2]=cos(π−cos−1z)
⇒[xy−√1−x2√1−y2]=cos(π−cos−1z)∴cos(π−θ)=−cosθ
⇒[xy−√1−x2√1−y2]=−coscos−1z
⇒[xy−√1−x2√1−y2]=−z
⇒xy+z=√1−x2√1−y2
On squaring both side and we get$\begin{align}
(xy+z)2=(1−x2)(1−y2)
⇒x2y2+z2+2xyz=1−x2−y2+x2y2
⇒z2+2xyz=1−x2−y2
⇒x2+y2+z2+2xyz=1
Hence proved.