Ifcos20°-sin20°=pthen cos40°is equal to
p2(2–p2)
p(2–p2)
p+(2–p2)
p–(2–p2)
The explanation for the correct option :
Find the value of cos40°:
Given, cos20°–sin20°=p
Squaring on both sides,
⇒cos2(20°)+sin2(20°)–2sin20°cos20°=p2⇒1–sin2×(20°)=p2⇒sin40°=1–p2
Now,
cos40°=[1–sin2(40°)]=1–(1–p2)2=[1–(1+p4–2p2)]=(2p2–p4)=[p2(2–p2)]=p(2–p2)
Hence, option (B) is the correct answer.