If cos 2x + 2 cos x = 1 then, (2−cos2x) sin2x is equal to
1
We have,
cos 2x + 2 cos x = 1
⇒ 2cos2 x - 1 + 2 cos x = 1
⇒ 2cos2 x + 2 cos x - 2 = 0
⇒ 2cos2x + cos x - 1 = 0
⇒ cos x=−1±√12+42⇒ cos x=−1±√52⇒ cos x=−1+√52
Now,
(2−cos2x)sin2x
=[2−(−1±√52)2] (1−cos2x)=[2−14(1−2√5+5)](1−14(1−2√5+5))=14(1+√5) (√5−1)=44=1