If cos2x=(2+1)(cosx-(12)) then cosx≠12,x∈
2nπ±π3:n∈Z
2nπ±π6:n∈Z
2nπ±π2:n∈Z
2nπ±π4:n∈Z
Explanation for the correct option:
Given,
cos2x=(2+1)(cosx-(12))
⇒ (2cos2x–1)=[(2+1)2](2cosx–1)
⇒(2cosx+1)(2cosx–1)=[(2+1)2](2cosx–1)
⇒ 2cosx+1=[(2+1)2]
⇒ 2cosx=1+(12)–1
⇒ cosx=1(2)(2)
⇒ cosx=12
∴x∈2nπ±π3:n∈Z
Hence, the correct option is (A).
If f=x1+x2+13(x1+x2)3+15(x1+x2)5+... to ∞ and g=x−23x3+15x5+17x7−29x9+..., then f=d×g. Find 4d.
The maximum value of f(x)=sin2x1+cos2xcos2x1+sin2xcos2xcos2xsin2xcos2xsin2x,x∈R is: