If cosA=34, then 32sin(A2)sin(5A2)=
7
8
11
None of these
Explanation for the correct options:
Finding the value of 32sin(A/2)sin(5A/2):
Given,
cosA=3432sin(A2)sin(5A2)=16[2sin(A2)sin(5A2)]
32sinA2sin5A2=16cosA2–5A2–cosA2+5A2=16(cos2A–cos3A)=16[2cos2A–1–(4cos3A–3cosA)]=16[2cos2A–1–4cos3A+3cosA]=162916–1–42764+334∵givencosA=¾=1698–1–2716+94=18–16–27+36=11
Hence. the correct answer is option (C).
Evaluate :cos48°-sin42°