If cosθ+sinθ=√2cosθ, prove that cosθ−sinθ=√2sinθ.
Given: cosθ+sinθ=√2cosθ,
Squaring both the sides, we get,
⇒(cosθ+sinθ)2=(√2cosθ)2
⇒cos2θ+sin2θ+2cosθsinθ=2cos2θ
⇒sin2θ−cos2θ+2cosθsinθ=0
Subtracting, 2sin2θ from both sides, we get,
⇒−sin2θ−cos2θ+2cosθsinθ=−2sin2θ
⇒sin2θ+cos2θ−2cosθsinθ=2sin2θ
⇒(cosθ−sinθ)2=(√2sinθ)2
⇒cosθ−sinθ=√2sinθ
Hence, proved.