wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

If cosθ+sinθ=2cosθ, prove that cosθsinθ=2sinθ.

Open in App
Solution

Given: cosθ+sinθ=2cosθ,

Squaring both the sides, we get,

(cosθ+sinθ)2=(2cosθ)2

cos2θ+sin2θ+2cosθsinθ=2cos2θ

sin2θcos2θ+2cosθsinθ=0

Subtracting, 2sin2θ from both sides, we get,

sin2θcos2θ+2cosθsinθ=2sin2θ

sin2θ+cos2θ2cosθsinθ=2sin2θ

(cosθsinθ)2=(2sinθ)2

cosθsinθ=2sinθ

Hence, proved.


flag
Suggest Corrections
thumbs-up
1
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Range of Trigonometric Ratios from 0 to 90
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon