If cosθ=12a+1a, then the value of cos3θ is
18a3+1a3
32a+1a
12a3+1a3
13a3+1a3
Find the value of cos3θ:
Given, cosθ=12a+1a
As we know,
cos3θ=4cos3θ–3cosθ=cosθ[4cos2θ–3]=12a+1a412a+1a2–3=12a+1a44a2+1a2+2–3=12a+1aa2+1a2-1
∴cos3θ=(12)(a3+1a3) ; ∵x3+y3=(x+y)(x2+y2–xy)
Hence, Option ‘C’ is Correct.
{1(sec2θ−cos2θ)+1(cosec2θ−sin2θ)}(sin2θcos2θ)=1−sin2θcos2θ2+sin2θcos2θ