If cosθ=12x+1x, then 12x2+1x2=?
sin2θ
cos2θ
tan2θ
sec2θ
Find the value of (12)(x2+1x2):
Given, cosθ=12x+1x
⇒ 2cosθ=x+1x
Step 2. By squaring on both sides, we get
2cosθ2=x+1x2
⇒ 4cos2θ=x2+1x2+2
⇒ 4cos2θ-2=x2+1x2
⇒ 22cos2θ-1=x2+1x2
⇒ 2cos2θ=x2+1x2 ; ∵cos2θ=2cos2θ-1
∴(12)(x2+1x2)=cos2θ
Hence, Option ‘B’ is Correct.
{1(sec2θ−cos2θ)+1(cosec2θ−sin2θ)}(sin2θcos2θ)=1−sin2θcos2θ2+sin2θcos2θ
From the following place value table, write the decimal number:-
From the given place value table, write the decimal number.
Find the value of x so that; (i) (34)2x+1=((34)3)3(ii) (25)3×(25)6=(25)3x(iii) (−15)20÷(−15)15=(−15)5x(iv) 116×(12)2=(12)3(x−2)