The correct option is E −1+√52
Given, cosx+cos2x=1 .... (i)
⇒cos2x+cosx−1=0
Therefore, cosx=−1±√1+42(∵ quadratic in cosx)
=−1±√52=−1+√52(∵cosx≠−1−√52)
Also from Eq. (i),
cosx=1−cos2x
⇒cosx=sin2x .... (ii)
Now, sin4x+sin6x
=cos2x+cos3x
=cos2x(1+cosx)
=(−1+√52)2(1+−1+√52)
=(−1+√52)2(1+√52)
=(−1+√52)(5−14)=(−1+√52)×1
=−1+√52