If cosx=kcos(x−2y), then tan(x−y)tany is equal to
cosx=kcos(x−2y)
cosxcos(x−2y)=k=k1
Applying componendo-Dividendo, we get
cosx+cos(x−2y)cosx−cos(x−2y)=k+1k−1
2cos(x+x−2y2)cos(2y2)2sin(x+x−2y2)sin(x−2y−x2)=k+1k−1
=cos(x−y)cosy−sin(x−y)siny=k+1k−1
sin(x−y)sinycos(x−y)cosy=1−k1+k
tan(x−y).tany=1−k1+k.