wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

If cosec (A + B) = 1 and cosec(A – B) = 2, 0° < (A + B) ≤ 90° and A > B then find the values of :
(i) sin A cos B + cos A sin B
(ii) tan A-tan B1+tan A tan B

Open in App
Solution

As we know that,
cosec90°=1Thus,if cosecA+B=1A+B=90° ...1and cosec30°=2Thus,if cosecA-B=2A-B=30° ...2Solving 1 and 2, we getA=60° and B=30° ...3Now,(i) sin60°=32cos30°=32cos60°=12sin30°=12On substituting these values, we getsinA cosB+cosA sinB=sin60° cos30°+cos60° sin30° =32×32+12×12 =34+14 =44 =1Hence, sinA cosB+cosA sinB=1.(ii) tan60°=3tan30°=13On substituting these values, we gettanA-tanB1+tanA tanB=tan60°-tan30°1+tan60° tan30° =3-131+313 =3-131+1 =223 =13Hence, tanA-tanB1+tanA tanB=13.

flag
Suggest Corrections
thumbs-up
32
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Compound Angles
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon