If cosecA+cotA=11/2, then tanA=?
21/22
15/16
44/117
117/43
The explanation for the correct option:
Step 1. Using the identity cosec2A–cot2A=1,
Given, cosecA+cotA=11/2….(i)
⇒(cosecA+cotA)(cosecA–cotA)=1(11/2)(cosecA–cotA)=1cosecA–cotA=2/11….(ii)
Step 2. Subtracting (ii) from (i),
cosecA+cotA–cosecA+cotA=(11/2)–(2/11)2cotA=(121–4)22cotA=117/44tanA=1cotA=44117
Hence, The correct answer is option (C).
If cosecθ+cotθ=112, then tanθ=
If cosecA+cotA=112, then tan A =