If (cot−1x)2–3(cot−1x)+2>0, then x lies in
(cot2,cot1)
(−∞,cot2)∪(cot1,∞)
(cot1,∞)
(−∞,cot1)∪(cot2,∞)
(cot−1x−1)(cot−1x−2)>0 ⇒x<cot2 or x>cot1 (cot−1x is a decreasing function)