If cot-1(α)+cot-1(β)=cot-1(x), then x
α+β
α–β
(1+αβ)(α+β)
(αβ–1)(α+β)
Find the value of x:
Given, cot-1(α)+cot-1(β)=cot-1(x)
⇒tan-11α+tan-11β=tan-11x
⇒ tan-11α+1β1–1α1β=tan-11x ∵tan-1(a)+tan-1(b)=tan-1(a+b1–ab)
⇒ tan-1β+ααβ–1=tan-11x
⇒ α+βαβ–1=1x
∴x=(αβ–1)(α+β)
Hence, Option 'D is Correct.
If tanA-tanB=x and cotB-cotA=y, then cotA-B=?
If tan(cotx)=cot(tanx), then