The correct option is B (−1)r1r!(n−r)!
Multiply both sides by (x+r)
R.H.S=A0(x+r)x+A1(x+r)x+1+A2(x+r)x+2+.....+An(x+r)x+n
Put: x=−r
Hence, R.H.S=Ar
Now, L.H.S=x+rx(x+1)(x+2)...(x+n)
L.H.S=x+rx(x+1).....(x+r)...(x+n)
L.H.S=1x(x+1).....(x+r−1)(x+r+1)...(x+n)
Put: x=−r
L.H.S=1[−r(−r+1).....(−r+r−1)][(−r+r+1)...(−r+n)]
Hence, Ar=(−1)r1r!(n−r)!